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Reductions of (2 + 1)-dimensional integrable systems via 
mixed potential-eigenfnnction constraints 
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t Service de Physique ThCoriquc, CEN Saday, 91191 Gif-sur-Yvette. Francs 
t Fachbcreich 17-MathematiWlnfomatik, OH-Universitit Kasscl, Holliindische 
Strase 36. 3500 Kasssl, Federal Republic of Onmany 

Received 3 March 1992 

Abstract. New types of reductions of (2+ l)-dimensional integrable system which arc 
assodated with mixed potcntial-eigenfundion conshainb are dismaed. Necss~ary and 
sufIidcnt conditions for the admissibility of such constraints arc presented. Classification 
results for integrable equations will be uxd for applying thcae conditions. Several typical 
examples are considered, including the w, mm, (2 + 1)dimensional Savada-Kotera- 
KaupKupershmidt, Harry Dym and Nizhnik-Vcaelw-Novikav equations. 

1. Introduction 

It is well known that by using constraints integrable systems can be reduced to sys- 
tems containing a lower number of unknown functions or independent variables. In 
many cases reductions lead to interesting new integrable systems (see e.g. [ la ] ) .  An 
important class of reductions is associated with constraints which include both poten- 
tials obeying non-linear integrable systems and eigenfunctions of the corresponding 
linear problems. For ( 1  + 1)dimensional integrable systems reductions leading to 
finite-dimensional integrable systems have been widely discussed (see e.g. [S-101). 

A generalization of such types of reductions to the (2 + 1)-dimensional case has 
been proposed recently [11-17,301, where symmetry generators have been constrained 
to particular symmetries. Symmetry reductions of the w-hierarchy [U, 13,161 and 
mm-hierarchy [la] and other systems [12,14,15,17,30] have been considered. It has 
been shown that mixed potential-eigenfunction constraints reduce (2+1)dimensional 
integrable systems to (1 + 1)dimensional integrable systems. In the present paper we 
WUI uwuss gc~icru prupcrucb UL ~cuucuuiw ui ( ~ t  ~J - U I U I G I ~ B U U ~  u t c ~ a w c  sys~cuw 
and methods for obtaining suitable constraints. 
-3, _I: ------ 3 __^-^-<-" ..*-"A..".:-"- ^E, *  I .I\ >:--"":-""I :".--"I.,- 

Let us consider the (2+ 1)dimensional integrable system 

F(u,u5,uy ,U,, . . .) = 0 (1.1) 
which i representable as the compatibility condition of the linear system for the 
eigerduiictioiis + 

&(U, Wr l  = 0 (1.2) 
LdU, w = 0 (1.3) 

g Permanent address: lnalitutc of Nuclear Physis, Novmibimk 90. 630090 Russia. 
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where U is a multicomponent vector and L, and L, are linear partial differential 
operators. The coefficients of L, and L,  are parameterized by U. Let us introduce 
the formally adjoint system of (1.2), (1.3) 

B Konopelchenko and W Strampp 

L;(u,a)** = o (1.4) 

~ ; ( ~ , a ) + *  = o (1.5) 

with the adjoint eigenfunctions Q. The compatibility condition between (1.4) and 
(15) is again given by (1.1). Formulae (1.1)-(1.5) are typical representations of 
(2 + 1)-dimensional systems integrable by the IST method (see e.g. p-31). Note that 
the system (1.2). (1.3) or (1.4), (1.5) may not be compatible for any U which obeys 
(1.1). 

We will consider constraints on U, +, Q of the form 

f(u, U,,Uy,. . . ,*, Q , d J , ,  *;,!by, *;, . . .) = 0 (1.6) 

where f is some vector function. The constraint (1.6) is said admissable if (1.6) is 
compatible with (1.1)-(1.5). Admissable constraints lead to reductions of the system 
(1.1)-(1.5), i.e. to conversions into systems with a lower number of unknown functions 
or independent variables. In the cases where the function f depends only on U or 
d J ,  Q separately, we have pure potential or pure eigenfunction reductions which have 
been widely discussed (see e.g. [1-4]). Here we will consider the mixed case when 
the constraint (1.6) contains both the potentials U and the eigenfunctions $ and Q. 

Necessary and sufficient conditions are found for a subclass of such reduc- 
tions (1.6). Several typical examples are considered as illustrations. They include 
the Kadomtsev-Petviashdi (w), m u ,  (2 + 1)dimensional Savada-Kotera-Kaup 
Kupershmidt, Hany Dym, Nizhnik-Veselov-Novikov and some other equations. 

2. General approach 

For the sake of simplicity we will restrict ourselves to the evolutionary case when the 
system (1.1), (1.5) takes the form 

where A and B are linear operators with formally adjoints A' and E'. Furthermore, 
the constraint (1.6) will be assumed to take the form 

U = f(dJ, Q 9 d J # ,  $4 9 .  . .) . (2.6) 

Let us now discuss conditions for the admissibility of the constraint (2.6). i.e. the 
compatibility of (2.6) with equations (2.1)-(2.5). A necessary condition is given by 

(2.7) 
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A sufficient condition (S) is given by: the constraint (2.6) is admissable if (2.1) is 
identically satisfied in Virtue of (2.2)-(2.5) where U is given by (2.6). 

Under a constraint (2.6) the system (2.2)-(2.5) is reduced to a system of equations 
for $J, V only. Indeed, using (2.2), (2.4) and (2.6) we can e l i n a t e  U, U=, U,,, Gg, 11; 
from (23) and (2.5). As a result we get the following pair of systems: 

* v  = 411, .I*, *,,, *:, . . . , a,)+ 
*; = -AY1l,V,*z,*: ,..., %)V 

(2.8) 

(2.9) 

and 

*t = R*, $7.3 *,,, *:, . . ., a,)* 
*: = -B*(*,**,!bz,*;, . . . ,a=)11* 

(2.10) 

(2.11) 

where the operators A, k and E, B* are obtained from A, A' and B, B' through 
elimination of u,u,,uyr qbg,l/);. If the constraint (2.6) is admissable, then the 
reduced system (2.8)-(2.11) is compatible, i.e. system (2.8), (2.9) together with the 
system (2.10), (2.11) form a pair of commuting flows. This implies the following 
necessary condition (N) for admissibility: the constraint (2.6) is admissable if the 
system (U), (2.9) possesses the system (2.10), (2.11) as a higher-order Lie-Backlund 

Usually a whole hierarchy of integrable equations, i.e. Lie-Backlund symmetries, 
is associated with a given integrable equation (see [I-31). In the case of (2.1) a 
hierarchy of Lie-Backlund symmetries is obtained as compatibility conditions between 
the linear problem (2.2) and (2.3) (or (2.4) and (2.5)) where 1 + t ,  and B - B,, 
B' -t B; with higherader differential operators B,, B;. Imposing the constraint 
(2.6) on those systems and repeating the arguments given above we amve at the 
higher-order analogue of the system @E), (2.9) 

symmetry. 

Gt* = B,(*, 11' , 11= 9 11: 1 . .  . 9 a,)+ (2.12) 

*:" = -B:(*,V,+z, *:, . . . ,%)11' (2.13) 

where n = 1,2 ,3 .  . . . AU systems (2.12), (2.13) commute with the system (2.8). (2.9). 
So, appvig  the constraint (2.6) to the whole (2+ 1)-dimensional hierarchy we obtain 
an infinite family of commuting flows. As a consequence, one can reformulate the 
necessary condition (N) for admissibility as follows: the constraint (2.6) is admissable 
if the system (2.8). (2.9) possesses the systems (2.12), (2.13) as higher-order Lie- 
Backlund symmetries. 

If we take the sufficient condition (S) into account together with the fact that 
(2.1) is obtained as the compatibility condition between (2.2) and (2.3) or (2.4) and 
(25)  then the necessary condition (N) turns out to be a necessary and sufficient 
one. The existence of classification results for the second- and third-order integrable 
equations and systems (see e.g. [1&23]) will allow us to use these criteria rather 
effectively. As a necessary condition we first check with the the help of a list of 
integrable systems whether the system (2.8), (2.9) forms an integrable system, i.e. a 
system which possesses an infinite number of Lie-BBcklund symmetries. Then we 
deck  whether the system (2.10), (2.11) represents a symmetry of (U), (2.9). If both 
conditions are satisfied then the constraint (2.6) is admissable. 
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We emphasiie also that the systems (2.8), (2.9) and (2.10), (2.11) provide a na tud  
decomposition of the (2 + 1)dimensional integrable equation (2.1). Namely, if the 
functions + and V obey the (1 + l)-dimensional systems (2.8), (2.9) and ( 2 . 1 ~  
(2.11) then U given by (2.6) provides a solution of the (2 f 1)dimemional equation 
(2.1). This allows us to construct wide classes of solutio? of (2.1) using the common 
solutions of the systems (2.8), (2.9) and (2.10), (2.11) (see e.g. 1131). 

3. Thirdader integrable equations 

Let us consider (2 + 1)dimensional systems integrable by second-order linear prob- 
lems (2.2). Our f i t  example is given by the system (see e.g. 1241) 

I i; 

1 ,  .:7< 

uot = -6v0v0, - Z ( u  0 v' 1)" + ~ ' J o , , ~ ~ ' ' ~ V O " J ~ ,  + 2voViV1,  + '-'osvi, 

+ $u:'Joz + 3vo,a~'viY - '#'y + 'Ji'+= - v06,, (3.1) 

(3.2) 

= 2 ~ 0 , , + 6 ~ 0 y - ~ 1 z z , - 2 ( ~ o ~ l ) , +  3 a  7v1'Ji2 f3v1,ai1viy -3ai1V1,y -26 ,  

where +(I, U, 1 )  is an arbitrary function. The system (3.1). (3.2) is equivalent with 
the compatibility condition of the following linear system 1241: 

v i  '. 
J&+ = +y + +== + v1$, + uo+ = 0 (3.3) 

(3.4) 

Lad' = +t + 4$,,, + 6~1+,,, + (3vi, f %U? - 38F1v1, f 6 ~ 0 )  $'s 

+ (vo, + Zvov, -"4) 1/, = 0 .  

At v1 = 0, 4 = voz + 3El,-'vOy the system (3.1), (3.2) is reduced to the w equation 
for vo. At vo = 0, 4 = 0 it is reduced to the m w  equation for u1 see [24,2S]. 

We study constraints of the form 

which we impose on (3.3), (3.4). Now, under (3.5), (3.6) equation (3.3), (3.4) become 

where C and D are obtained by introducing (3.9, (3.6) into (3.3), (3A)-for instance 
C = -fl+, - fo+. According to the necessary and sufficient conditions for admis- 
sibility, (3.7) should possess an infinite set of higher-order symmetries, the first of 
which is given by (3.8). There exists a wide class of second-order evolution equations 
possesing an infinite number of symmetries (see e.g. [U]). The Burgers and the 
potential Burgers equations are the simplest of them. 

Now we restrict ourselves to the w w e  (ul  = 0, 6 = uoz + 3a,-1v0,) and the 
mw case (vo = 0, 4 = 0). In the w w e ,  under the constraint 

(3.9) 
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(3.7) becomes the Burgers equation +,, = -+,= - 2++=, while (3.8) becomes the 
f i t  higher-order Burgers equation $+t = - 3$4 - 3+,=+ - 3@+,. This 
reduction has been already discussed in [30] and [17]. In the ~ K P  case, under the 
constraint 

.U1 = 2+ (3.10) 

(3.7) again becomes the Burgers equation and (3.8) becomes the first higher-order 
Burgers equation. Next, instead of (3.10) we shall use the constraint 

U1 = Q, . (3.11) 

Under (3.11) equation (3.7) becomes the potential Burgers equation GY = -$.* - 

Q:. However, under (3.11) equation (3.8) does not become a symmetry of (3.7). 
This example shows that a constraint may convert the linear problem (3.3) into an 
integrable equation without being admissible. 

As a further example of a non-linear (2+ 1)dimensional equation associated with 
the secondarder spectral problem we shall consider the Harry-" equation 

U 
s u - 1  u2&l Y ( idy ut = -U3Uzrz  - (3.12) 

which is equivalent to the compatibility condition for the following system [2S]: 

Q,, = (3.13) 

(3.14) 

The simplest reduction of (3.12) and (3.13), (3.14) is due to the constraint 

U = + .  (3.15) 

Under the constraint (3.15) the linear problems (3.13), (3.14) take the form 

+y = -+%, (3.16) 

+t = -4Q 3 Q,., - 121C2+z*z, ' (3.17) 

Equation (3.16) is a well known non-linear diffusion equation which is linearizable 
while (3.17) is the first higher-order symmetry of (3.16)--see e.g. [23]. 

Note that the system (3.16), (3.17) provides a decomposition of the (2 + 1)- 
dimensional Harry-Dym equation (3.12). If + obeys (3.16), (3.17) then it will solve 
(3.12). Further reductions of the system (3.12) can be studied with the use of the 
results of [23]. 
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4. Reductions to systems of equations 

In what follows, in addition to the h e a r  system (3.3), (3.4), we shall take into account 
its adjoint version 

B Konopelchenko and W Strampp 

L : v  = -4 + +Zr - U , + :  +(WO - q2)+' = 0 (4.1) 

(4.2) 

L ; v  = - ~ :  -4+:,.. + 6~1lL:, + ( -3~1 ,  - + 3a;'~1,, - 6 ~ 0  + 12~1 , )  +: 
+ (3vl,, - 3vlv1, + 3V1,  - 2v0, + 2VoV1 - 4) = 0. 

We shall study constraints of the form 

(4.3) 
(4.4) 

The classification of systems of the type (4.9, (4.6) with C = C(+, V ,  +,, +;) and 
C = C*(+, +',+r,+:) which possess an infinite number of non-trivial symmetries 
has been given in [21,22]. So, according to the condition (N), constraints (4.3), (4.4) 
are candidates for admissible constraints whenever the functions 

!I+,+ fo+= C(+illv,+(27+;) (4.7) 
-fl!b:+(fo-fl,,)v = C*(+, f l ,+ , ,+; )  (4.8) 

belong to the list presented in [22]. 
For given C and C' the functions f,, and fl are defined by 

(f1++')= = c+* - c'+ (4.9) 

(4.10) 

So, according to the sufficient condition (S), if the system (3.Q (3.2) is satisfied in 
virtue of (4.S), (4.6) and the corresponding system for the i-flow where the functions 
fo and f, are determined by (4.9). (4.10) then the constraint (4.3), (4.4) is admissable. 
Note that this is a straightforward check. 

Let us consider the simpler cases of the KP and ~ K P  equations. For the KP 
equation v1 = 0, fl = 0 and therefore 

1 f --c 
0 -  1L 

(4.11) 

and 

(4.12) C ~ *  = 
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It is not difficult to check, using the list of C and C' given in 1221, that the condition 
(4.11) selects the only possibility 

(4.13) 
(4.14) 

(4.15) 

So for the KP equation we have the only possibility for an admissible reduction 

U,, = $11'. (4.16) 

within the class (4.3), (4.4). Note that the quantity $$* plays the role of a symme- 
try generator for the KP equation and that the symmetry constraint (4.16) appears 
naturally in our approach. 

Under the reduction (4.16) the problems (3.3)-(4.1) and (3.4)-(4.2) are converted 
into the AKNS: 

Qy = -$,,, - *=fl 
$; = $;= + **=* 

$t = -$e*s - $V*= 
$; = -$;e= - $$*$;. 

and the f i i t  higher AKNS system [ll-13,301 

For the ~ K P  equation (U,, = 0) we have f,, = 0 and from (4.10) 

c, 
fi = E 

and condition (4.9) becomes 

(4.17) 
(4.18) 

(4.19) 
(4.20) 

(4.21) 

(4.22) 

Working out (4.22) gives 

C'$ = CC$$* + C($$*), - C*$*& - C*'. (4.23) 

Since C = C($, V, $=,$;) and c' = C O ( $ ,  4, &, $;), from (4.23) we obtain 
C=$$* = C$v$=s/$z, i.e. C = c$,, where c is a constant. This means that 
u1 = e and we have a trivial constraint. In order to find admissable reductions of 
the type (4.3). (4.4) one can use also the resub given in 122, U]. 

In I301 a reduction has been found of the modified KP equation to the derivative 
non-linear SchrOdinger equation. This approach uses a symmetry generator for the 
modified KP equation which is given in terms of (3.3). (3.4) and a derivative version 
of (4.1). (4.2). 

+e 
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5. Fifth-order integrable systems 

Now let us consider (2 + 1)-dimensional integrable equations associated with third- 
order linear problems. The first examples are the Savada-Kotera (SK) and the 
Kupershmid (KK) equations. They are of the form 

B Konopdchenko and W Strampp 

ut = u , , , , , + ~ u u ~ ~ ~ + ~ ~ u , u ~ ~ + ~ ~ ~ u ~ + ~ u , , ~ - ~ ~ - ~ ~ ~ ~  +5uuy+5uza-1uy 

(5.1) 

where a = 1 for the SK equation and a = 4 for the KK equation. For the SK 
equation the linear problem is given by [25] 

for the KK equation. 
According to the necessary condition (N) (5.7) should possess infinitely many 

symmetries. The classification of such equations of the form (5.7) has been given in 
[1&20]. It includes six essentially different cases. In the first case we have a linear 
equation. The next two cases correspond to the KDV and the modified KDV equations. 
In the fourth case we have the Calogero-Degasperis equation. The equations of the 
fifth case include Weierstra 3-functions and the last case essentially reduces to the 
Krichever-Novikov (or KDV singularity manifold) equation. 

In the first case we have the trivial constraint U = 1 and the reduced equations 
corresponding to (5.2) and (5.4) become linear equations with constant coefficients. 
The second and the third cases lead us to the reduction of (5.2) and (5.4) to the 
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KDV and modified mv equations. Let us first consider the SK equation. The above 
reductions are 

USK = WJ (5.10) 

and 

uSK = 6G2. (5.11) 

Imposing the constraint (5.10) on the linear problems (5.2). (5.3) gives 

+y = -+zzz - Wll, (5.12) 

(5.13) - 10%Wzzs - ~W,$J,, - 30@1h, 
1 
5% = - ~ z , x z z  

while imposing the constraint (5.11) on those problems gives 

GY = -k, - Wa$= (5.14) 

5** 1 = -*xz,,x - 1 0 1 1 r ’ d ~ ~ ~ ~  - 40d4z$zx - l o &  - 30$4.1x. (5.15) 

Equations (5.12), (5.13) and (5.14), (5.15) are the KDV and the modified KDV equa- 
tions and their first higher equations. The reductions (5.10) and (5.11) for the SK 
equation first have been found by a different approach in [14] and [30]. 

The reductions which are close to (5.10) and (5.11) and which were not considered 
in [14] and [30] are 

USK = 6+, (5.16) 

and 

uSK = 6$2. (5.17) 

It is easy to see that (5.16) reduces (5.2), (5.3) to the potential KDV and its higher- 
order symmetry. The constraint (5.17) converts (5.2) into the potential ~ K D V  equa- 
tion. However, under (5.17), (5.3) does not become a higher-order symmetry. So the 
constraint (5.17) is not admissable. Note that the reductions (5.10), (5.11) and (5.16) 
lead to decompositions of the SK equation (5.1) into (1 + 1)-dimensional problems. 

Now, let us consider the KK equation (5.1) and the reduction to the second and 
third cases. The constraint 

UKK = 4 d ~  (5.18) 

reduces (5.2) to the KDV (5.12), but it is not difficult to show that the reduced 
version of (5.3) is different to the higher-order KDV equation (5.13) and that the KK 
equation (5.1) is not a consequence of these equations. So the constraint (5.18) is 
not admissable for the KK equation. 

The next possibility due to the necessary condition (N) is the constraint 

UKK = 3$3. (5.19) 
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The constraint (5.19) reduces (5.2) to the ~ K D V  equation (5.14), but as one can 
show, equation (5.3) is reduced to an equation which differs from the higher-order 
~ K D V  equation by the coefficient in front of the term +4q5,. So (5.19) is also not 
admissible for the KK equation. Finally, due to the necessary condition (N) we can 
consider the constraint 

B Konopelchenko and W Strampp 

which converts (5.2) into the Krichever-Novikov equation [19] 

(5.20) 

(5.21) 

The admissibility of (5.20) is an open problem and will be studied elsewhere. It 
is connected with the compatibility of systems of equations which are not of the 
evolutionary type. 

Our next example is the following equation [25]: 

* - - ,st2 U,,,, t 1ou-1/2 ( 
(5.22) 

which is equivalent to the compatibility condition for the system [25] 

$ Y = - u 3 / 2  QXZ, (5.23) 
- _  4 5 u 3 / 2  

* t  = - 9 u 6 1 2  L,,, 2 %@sm= 

= - [ 1 5 ~ ~ / ~ 8 - ' ( u - ' / ~ ) ,  + 15u;u,,] +,,, . 
(5.24) 

The simplest reduction for the system (5.23), (5.24) is 

U = $ .  (5.25) 

Indeed, one can check that under the constraint (5.25) equations (5.23), (5.24) are 
reduced to the commuting system 

+y = -*=/2&z, (5.26) 

(5.27) 45 3 1 2  % = --gljls/21jl, , ,x, - TdJ ($zkz*), 
and (5.22) is satisfied due to (5.26), (5.27). 

According to the necessary condition (N) the other possible constraint is 
u = 7 p .  (5.28) 

Under this constraint (5.23) is reduced to the well known (1 t 1)dimensional Harry- 
Dym equation 

(5.29) 

But (5.24) does not reduce to the higherader Harry-Dym equation. So the con- 
straint (5.28) is not admissible. 

Other possibilities can be analysed using the l i t  of third-order non-hear C- 
integrable equations presented in [20,22]. 

$y t +3*c,z = 0. 
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6. The Nizhnik-Veselov-Novikov equation 

Our last example is the Nizhnik-Veselov-Novikov (NVN) equation [27,28] 

ut = - ~ 1 " ( ( <  - nzu,,, i- 3 ~ 1  [U (a;lu,)], t 362 [U (a;l~()lc (6.1) 

where = 8, - cra , a = 8, t uaV, uz = t 1 , - 1  and nl,nz are arbitrary 
constants. Equation (l.1) 2 equivalent to the compatibility condition for the linear 
system 127,281 

Ll* =-$+, t U* = o  (6.2) 

L z q  = $1 t Kid'((( + Kz$"an, - 3 K 1  (ailU,) d',, - 3 K z  (a;'U() $( = 0 .  (6.3) 

The operator representation of the compatibility condition for (6.1) is given by Man- 
akov's triad equation [27,28] 

W , , L A  = -3 ( K ~  (ailu,,) t nz (a;lu(~)) L, . (6.4) 

The adjoint linear system for (6.1) takes the form 

Ll** = -*;, t U*' = 0 (6 .9  

L&* = -11; - K I Q ( E (  - Kz*& + 3 K ~  ( (a ; 'U , )$* )  t 3% ((a;lU()$*)c = 0 .  
7 

(6.6) 

The case of the NVN equation (6.1) is different from the previous ones due to the 
non-evolutionary character of the linear systems (6.2), (6.3) and (6.5), (6.6). 

It is not difficult to see that the system (6.1). (6.2)-(6.3), (6.5)-(6.6) admits the 
reduction 

U=*'. (6.7) 

Indeed, under this constraint the systems (6.2), (6.3) and (6.5), (6.6) reduce to 

$1 = -~l*(((  - ~z+,,, + 3 ~ 1  (ai1+;) +, -t 3 K z  (a;'+;) +( (6.10) 

1 ~ ;  = - K ~ + ; ( (  - Kz$;,, t 3 ~ 1  ( ( ~ F ~ + ; w )  t 3n2 (6.11) 

and (6.11) coincides with (6.1). The system (6.8)-(6.11) is a compatible one. Equa- 
tions (6.8). (6.9) form a closed two-dimensional system. 

, 
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In the particular case of tcZ = 0 the system (6.8)-(6.11) is equivalent to the NO 
commuting non-local systems of evolution type 

$, = a;1($$*) (6.12) 

$; = ay'($'2) (6.13) 

$1 = -Ki'h(<( + 3n1 (aF1($q)) aF2($*') (6.14) 

$': = -Si$;c< 4- 3 K l @ ~ 1 ( ~ 2 ) a ~ 2 ( ~ ' )  + 6~11Ya;' ($*@;'($*')) . (6.15) 

A similar equation is obtained in the case nl = 0 with the substitution 

the neccessary condition (N) is the following: 

U q. 
Among other possible constraints of the system (6.1)-(6.3) at n2 = 0 which obeys 

U = 2a; ' ($2) ( .  (6.16) 

Under this constraint equations (6.2), (6.3) become 

(6.17) 
(6.18) 

Equation (6.17) is integrable (see [29]) and (6.18) is the modified KDV. So, under 
(6.16) the linear problems (6.2), (6.3) are both converted into integrable equations. 
However, those equations turn out not to be compatible. 
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